Skip to main content

GE Aviation Signs Additive Manufacturing Cooperative Agreement with Sigma Labs

May 24, 2013

EVENDALE, OHIO - GE Aviation and Sigma Labs, Inc. signed a Joint Technology Development Agreement (JTDA) to advance and implement in-process inspection technologies for additive manufactured jet engine components.

The mutually-developed inspection technology will verify the quality and geometry of additive components during the additive build process, increasing additive production speeds up to 25 percent in support of GE Aviation's growing production rates.

"Today, post-build inspection procedures account for as much as 25 percent of the time required to produce an additively manufactured engine component," said Greg Morris, GE Aviation's business development leader for additive manufacturing. "By conducting those inspection procedures while the component is being built, GE Aviation and Sigma labs will expedite production rates for GE's additive manufactured engine components like the LEAP fuel nozzle."

Mark Cola, President and Chief Executive Officer of Sigma Labs, stated, "We are pleased to have signed the agreement and to begin the next phase in demonstrating our PrintRite3D™ technology for additive manufacturing of metal parts. Together, we will be focusing our efforts in working to assure the build quality and as-built repeatability of additively manufactured aircraft engine components, thereby ensuring predictable materials properties critical to successful product commercialization."

By 2020, GE Aviation will produce more than 100,000 additive manufactured components for the LEAP™ and GE9X engines. GE will install 19 additive manufactured fuel nozzles on every LEAP engine, which has amassed more than 4,500 orders. The LEAP fuel nozzle is up to 25 percent lighter and five-times more durable than traditionally manufactured fuel nozzles, leading to significant fuel savings.

Additive manufacturing enables optimized designs for complex components. GE Aviation uses additive manufacturing methods such as direct metal laser melting (DMLM) to build 3D-designed production engine components that traditional manufacturing methods are incapable of producing.

GE's additive manufactured components weigh less than conventional parts because they replace complex assemblies with single pieces, reducing the need for brazing and welding. Additive manufacturing also generates less scrap material during the fabrication process.

The additive manufacturing process involves taking digital designs from computer aided design (CAD) software, and laying horizontal cross-sections to manufacture the part. The process creates the layered cross-sections using a laser beam to melt the raw material.

About Sigma Labs, Inc.

Sigma Labs, Inc. (OTCBB: SGLB) has two wholly-owned subsidiaries - B6 Sigma, Inc. and Sumner & Lawrence Limited (dba Sumner Associates). B6 Sigma develops precision manufacturing solutions and advanced materials technologies, as well as R&D solutions for first-tier integrators and other commercial firms worldwide. Sumner Associates provide high-level consultants to Federal government and commercial clients seeking productive solutions for emerging and strategic development technologies. Sigma Labs has current contracts with Federal government and private industry clients to provide high-level contract engineering services and develops technologies from their conception through the design, building, and testing of prototype systems. For more information please visit us at www.sigmalabsinc.com.

About GE Aviation

GE Aviation, an operating unit of GE (NYSE: GE), is a world-leading provider of jet, turboshaft and turboprop engines, components and integrated systems for commercial, military, business and general aviation aircraft. GE Aviation has a global service network to support these offerings.